29 research outputs found

    Dislocation structure and deformation hardening alloy fcc single crystals at the mesolevel

    Get PDF
    The article presents the evaluation results of impacts of various strengthening mechanisms to flow stress. Such evaluations were made on the basis of the measured parameters of the dislocation substructure formed in monocrystals of [001]-Ni3Fe alloy deformed by compression within the stage II. It was found that the main impact to deformation resistance in the alloys with net substructure is made by the mechanism of dislocation impediment, which is caused by contact interaction between moving dislocations and forest dislocations

    Dislocation structure and deformation hardening alloy fcc single crystals at the mesolevel

    Get PDF
    The article presents the evaluation results of impacts of various strengthening mechanisms to flow stress. Such evaluations were made on the basis of the measured parameters of the dislocation substructure formed in monocrystals of [001]-Ni3Fe alloy deformed by compression within the stage II. It was found that the main impact to deformation resistance in the alloys with net substructure is made by the mechanism of dislocation impediment, which is caused by contact interaction between moving dislocations and forest dislocations

    A new design for a green calcium indicator with a smaller size and a reduced number of calcium-binding sites

    Get PDF
    Genetically encoded calcium indicators (GECIs) are mainly represented by two- or one-fluorophore-based sensors. One type of two-fluorophore-based sensor, carrying Opsanus troponin C (TnC) as the Ca2+-binding moiety, has two binding sites for calcium ions, providing a linear response to calcium ions. One-fluorophore-based sensors have four Ca2+-binding sites but are better suited for in vivo experiments. Herein, we describe a novel design for a one-fluorophore-based GECI with two Ca2+-binding sites. The engineered sensor, called NTnC, uses TnC as the Ca2+-binding moiety, inserted in the mNeonGreen fluorescent protein. Monomeric NTnC has higher brightness and pH-stability in vitro compared with the standard GECI GCaMP6s. In addition, NTnC shows an inverted fluorescence response to Ca2+. Using NTnC, we have visualized Ca2+ dynamics during spontaneous activity of neuronal cultures as confirmed by control NTnC and its mutant, in which the affinity to Ca2+ is eliminated. Using whole-cell patch clamp, we have demonstrated that NTnC dynamics in neurons are similar to those of GCaMP6s and allow robust detection of single action potentials. Finally, we have used NTnC to visualize Ca2+ neuronal activity in vivo in the V1 cortical area in awake and freely moving mice using two-photon microscopy or an nVista miniaturized microscope

    Efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment (PIONEER 5): a placebo-controlled, randomised, phase 3a trial

    Get PDF
    Background: Oral semaglutide is the first oral glucagon-like peptide-1 (GLP-1) receptor agonist for glycaemic control in patients with type 2 diabetes. Type 2 diabetes is commonly associated with renal impairment, restricting treatment options. We aimed to investigate the efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment. Methods: This randomised, double-blind, phase 3a trial was undertaken at 88 sites in eight countries. Patients aged 18 years and older, with type 2 diabetes, an estimated glomerular filtration rate of 30–59 mL/min per 1·73 m2, and who had been receiving a stable dose of metformin or sulfonylurea, or both, or basal insulin with or without metformin for the past 90 days were eligible. Participants were randomly assigned (1:1) by use of an interactive web-response system, with stratification by glucose-lowering medication and renal function, to receive oral semaglutide (dose escalated to 14 mg once daily) or matching placebo for 26 weeks, in addition to background medication. Participants and site staff were masked to assignment. Two efficacy-related estimands were defined: treatment policy (regardless of treatment discontinuation or rescue medication) and trial product (on treatment without rescue medication) in all participants randomly assigned. Endpoints were change from baseline to week 26 in HbA1c (primary endpoint) and bodyweight (confirmatory secondary endpoint), assessed in all participants with sufficient data. Safety was assessed in all participants who received at least one dose of study drug. This trial is registered on ClinicalTrials.gov, number NCT02827708, and the European Clinical Trials Registry, number EudraCT 2015-005326-19, and is now complete. Findings: Between Sept 20, 2016, and Sept 29, 2017, of 721 patients screened, 324 were eligible and randomly assigned to oral semaglutide (n=163) or placebo (n=161). Mean age at baseline was 70 years (SD 8), and 168 (52%) of participants were female. 133 (82%) participants in the oral semaglutide group and 141 (88%) in the placebo group completed 26 weeks on treatment. At 26 weeks, oral semaglutide was superior to placebo in decreasing HbA1c (estimated mean change of −1·0 percentage point (SE 0·1; −11 mmol/mol [SE 0·8]) vs −0·2 percentage points (SE 0·1; −2 mmol/mol [SE 0·8]); estimated treatment difference [ETD]: −0·8 percentage points, 95% CI −1·0 to −0·6;

    Narrow gap III-V materials for infrared photodiodes and thermophotovoltaic cells

    No full text
    Bu çalışma, 4-8 Şubat 2010 tarihlerinde İstanbul[Türkiye]'da düzenlenen 2. World Conference on Educational Sciences (WCES-2010)'da bildiri olarak sunulmuştur.The paper describes liquid phase epitaxial growth and characterization of the GaSb- and InAs-related materials for the photodiodes and thermophotovoltaic applications. It was shown that doping of the melt with holmium results in obtaining the high purity GaInAsSb and InAs layers. The passivation with the 1 M Na2S aqueous solution makes it possible to prepare flat growth surfaces of GaSb(1 0 0) and InAs(1 0 0) substrates after annealing. A reproducible technique has been developed for fabrication of the high-efficiency GaInAsSb/GaAlAsSb and InAs/InAsSbP photodiodes with the long-wavelength photosensitivity edge of 2.4 and 3.8 mu m, respectively. Room temperature detectivity in the spectral peak reaches D* = (0.8-1.0) x 10(11) W-1 cm Hz(1/2) for the GaInAsSb/GaAlAsSb photodiodes and D* = (3.0-5.0) x 109 W-1 cm Hz(1/2) for the InAs/InAsSbP devices. We have adapted the technology for thermophotovoltaic cells operating at an emitter temperature of 1000-1700 degree
    corecore